I plotted airborne radiometric data from the Tellus survey (Geological Survey, Ireland).
Load packages:
library(sf)
library(tidyverse)
- Download the radiomatric data (Tellus 2019: A5 block (Limerick)):
dir.create("Rdata")
Radiometric_URL <- "https://secure.dccae.gov.ie/GSI_DOWNLOAD/Geophysics/Data/GSI_Tellus_A5_RAD_GRIDS_2019.zip"
download.file(Radiometric_URL, destfile = "Rdata/Radiometrics.zip")
unzip(zipfile = "Rdata/Radiometrics.zip", exdir = "Rdata/Radiometrics")
Uranium <- rgdal::readGDAL("Rdata/Radiometrics/A5_RAD_GRIDS_2019/GXF/A5_RAD_Uranium_equivalent.gxf")
## Rdata/Radiometrics/A5_RAD_GRIDS_2019/GXF/A5_RAD_Uranium_equivalent.gxf has GDAL driver GXF
## and has 1912 rows and 1978 columns
# Color palette
Col_Ramp <- readxl::read_xls("Rdata/Radiometrics/A5_RAD_GRIDS_2019/Readme_Files_And_Instructions/QGIS_Clra_32_Geosoft_hex_Colour_Ramp.xls",
sheet = 1,
col_names = FALSE,
skip = 4) %>%
select(3) %>%
as_vector() %>%
as.character()
unlink("Rdata", recursive = TRUE)
- Plot the results
breaks <- quantile(Uranium@data$band1, probs = seq(0, 1, 1/38), na.rm = TRUE)
ggplot() +
inlabru::gg(data = Uranium) +
labs(title = "Airborne geophysical Gamma-Ray data",
subtitle = "GSI - Tellus 2019: A5 block (Limerick)") +
scale_fill_gradientn(name = "eU [ppm]",
colors = Col_Ramp,
values = scales::rescale(breaks),
limits = c(min(breaks), max(breaks))) +
theme(legend.key.size = unit(1.5, "cm"),
legend.key.width = unit(0.5,"cm")) +
coord_fixed(ratio = 1)